skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balitactac, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many viscous liquids behave effectively as incompressible under high pressures but display a pronounced dependence of viscosity on pressure. The classical incompressible Navier-Stokes model cannot account for both features, and a simple pressure-dependent modification introduces questions about the well-posedness of the resulting equations. This paper presents the first study of a second-gradient extension of the incompressible Navier-Stokes model, recently introduced by the authors, which includes higher-order spatial derivatives, pressure-sensitive viscosities, and complementary boundary conditions. Focusing on steady flow down an inclined plane, we adopt Barus' exponential law and impose weak adherence at the lower boundary and a prescribed ambient pressure at the free surface. Through numerical simulations, we examine how the flow profile varies with the angle of inclination, ambient pressure, viscosity sensitivity to pressure, and internal length scale. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  2. We introduce second-gradient models for incompressible viscous fluids, building on the framework introduced by Fried and Gurtin. We propose a new and simple constitutive relation for the hyperpressure to ensure that the models are both physically meaningful and mathematically well-posed. The framework is further extended to incorporate pressure-dependent viscosities. We show that for the pressure-dependent viscosity model, the inclusion of second-gradient effects guarantees the ellipticity of the governing pressure equation, in contrast to previous models rooted in classical continuum mechanics. The constant viscosity model is applied to steady cylindrical flows, where explicit solutions are derived under both strong and weak adherence boundary conditions. In each case, we establish convergence of the velocity profiles to the classical Navier-Stokes solutions as the model's characteristic length scales tend to zero. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026